

Introductory Chemistry Essentials

FIFTH EDITION

Nivaldo J.Tro

Periodic Table of the Elements

		GROUP								
		1								
		1A							A tomio mu	and have
		1					1— U —			
	1	H	2				1.01—		Element s	ymdol
		1.01 hydrogen	2A				hydrogen		Atomic m	ass*
		3	4						Element n	ame
	2	Li	Be							
		6.94 lithium	9.01 beryllium							
		11	12							
	3	Na 22.00	Mg	3	4	5	6	7	8	9
-		sodium	magnesium	3B	4B	5B	6B	7B	8B	8B
DD		19	20	21	22	23	24	25	26	27
RIC	4	K 30.10	Ca	Sc	11 1788	V 50.04	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.03
ΘE		potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt
Η		37	38	39	40	41	42	43	44	45
	5	Rb	Sr 9762	Y	Zr	Nb	Mo	\mathbf{Tc}	Ru 101.07	Rh
		rubidium	strontium	yttrium	zirconium	niobium	95.95 molybdenum	technetium	ruthenium	rhodium
		55	56	57	72	73	74	75	76	77
	6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir
		cesium	barium	lanthanum	hafnium	tantalum	tungsten	rhenium	osmium	iridium
		87	88	89	104	105	106	107	108	109
	7	\mathbf{Fr}	\mathbf{Ka}	Ac (227)	Rf (261)	\mathbf{Db}	Sg (263)	\mathbf{Bh}	Hs (265)	Mt (266)
		francium	radium	actinium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium
Lanthanide series			58	59	60	61	62	63		
			Ce	Pr	Nd	\mathbf{Pm}	Sm	Eu		
					cerium	praseodymium	neodymium	promethium	samarium	europium
					90	91	92	93	94	95
	Actinide series				(232)	(221)	(228)	Np (227)	Pu (244)	\mathbf{Am}
					thorium	protactinium	uranium	neptunium	plutonium	americium

*The mass number of an important radioactive isotope—not the atomic mass is shown in parentheses for those elements with no stable isotopes.

	Metals							
Metalloids							18 8A	
Nonmetals			13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00 helium
			5 B 10.81 boron 13	6 C 12.01 carbon 14	7 N 14.01 nitrogen 15	8 O 16.00 oxygen 16	9 F 19.00 fluorine 17	10 Ne 20.18 neon 18
10 8 B	11 1B	12 2B	Al 26.98 aluminum	Si 28.09 silicon	P 30.97 phosphorus	S 32.06 sulfur	Cl 35.45	Ar 39.95
28 Ni 58.69 nickel	29 Cu 63.55 copper	30 Zn 65.39 zinc	31 Ga 69.72 gallium	32 Ge 72.63 germanium	33 As 74.92 arsenic	34 Se 78.97 selenium	35 Br 79.90	36 Kr 83.80 krypton
46 Pd 106.42 palladiun	47 Ag 107.87 n silver	48 Cd 112.41 cadmium	49 In 114.82 indium	50 Sn 118.71 tin	51 Sb 121.75 antimony	52 Te 127.60 tellurium	53 I 126.90	54 Xe 131.29 xenon
78 Pt 195.08 platinum	79 Au 196.97 gold	80 Hg 200.59 mercury	81 Tl 204.38 thallium	82 Pb 207.2 lead	83 Bi 208.98 bismuth	84 Po (209) polonium	85 At (210) astatine	86 Rn (222) radon
110 Ds (281) darmstadtiu	111 Rg (280) m roentgenium	112 Cn (285)	113 (284)	114 Fl (289)	115 (288)	116 Lv (293)	117 ** (292)	118 (294)
64 Gd 157.25 gadoliniun 96	65 Tb 158.93 terbium 97	66 Dy 162.50 dysprosium 98	67 Ho 164.93 holmium 99	68 Er 167.26 erbium 100	69 Tm 168.93 thulium 101	70 Yb 173.04 ytterbium 102	71 Lu 174.97 lutetium 103	
Ćm	Bk	Ćf	Es	Fm	Md	No	Lr	

(257) fermium

(258) (259) mendelevium nobelium (260) lawrencium

**Discovered in 2010, element 117 is currently under review by IUPAC.

(247) (251) (252) berkelium californium einsteinium

(247) curium

INTRODUCTORY CHEMISTRY ESSENTIALS

This page is intentionally left blank.

Nívaldo J. Tro

Westmont College Global Edition Contributions by

Ho Yu Au-Yeung

The University of Hong Kong

PEARSON

Boston Columbus Indianapolis New York San Francisco **Upper Saddle River** Amsterdam **Cape Town** Dubai London Madrid Milan Munich Paris Montréal Toronto Mexico City São Paulo Sydney Hong Kong Seoul Taipei Delhi Singapore Tokyo

- Editor in Chief: Adam Jaworski Acquisitions Editor: Chris Hess, Ph.D Director of Development: Jennifer Hart Executive Marketing Manager: Jonathan Cottrell Associate Team Lead, Program Management, Chemistry and Geosciences: Jessica Moro Program Manager: Coleen Morrison Development Editor: Erin Mulligan Editorial Assistant: Caitlin Falco Marketing Assistant: Nicola Houston Team Lead, Project Management, Chemistry and Geosciences: Gina M. Cheselka Project Manager: Beth Sweeten Head of Learning Asset Acquisition, Global Edition: Laura Dent Senior Acquisitions Editor, Global Edition: Priyanka Ahuja Project Editor, Global Edition: Anuprova Dey Chowdhuri
- Media Production Manager, Global Edition: M. Vikram Kumar Senior Manufacturing Controller, Global Edition: Trudy Kimber Production Management: Lumina Datamatics Compositor: Lumina Datamatics Illustrator: Precision Graphics Image Lead: Maya Melenchuk Photo Researcher: Peter Jardim, PreMedial Global Text Permissions Manager: Michael Farmer Text Permission Researcher: Electronic Publishing Services Inc. Interior Design Manager: Mark Ong Interior Designer: Wanda Espana, WeeDesign Cover Design Manager: Jonathan Boylan Cover Designer: Shree Mohanambal Inbakumar, Lumina Datamatics Operations Specialist: Christy Hall Cover Art: © Laborant/Shutterstock

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within the text or on p. PC-1.

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Nivaldo J. Tro to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Introductory Chemistry Essentials, 5th edition, ISBN 978-0-321-91873-4, by Nivaldo J. Tro, published by Pearson Education, Inc. © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps. All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 1-292-06133-2 ISBN 13: 978-1-292-06133-7 (Print) ISBN 13: 978-1-488-68349-7 (PDF)

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1 Typeset in Minion Pro by Lumina Datamatics® Printed and bound by CTPS in China

About the Author

Nivaldo Tro, is a Professor of Chemistry at Westmont College in Santa Barbara, California, where he has been a faculty member since 1990. He received his Ph.D. in chemistry from Stanford University for work on developing and using optical techniques to study the adsorption and desorption of molecules to and from surfaces in ultra high vacuum. He then went on to the University of California at Berkeley, where he did post doctoral research on ultrafast reaction dynamics in solution. Since coming to Westmont, Professor Tro has been awarded grants from the American Chemical Society Petroleum Research Fund, from Research Corporation, and from the National Science Foundation to study the dynamics of various processes occurring in thin adlayer films adsorbed on dielectric surfaces. He has been honored as Westmont's outstanding teacher of the year three times and has also received the college's outstanding researcher of the year

award. Professor Tro lives in Santa Barbara with his wife, Ann, and their four children, Michael, Ali, Kyle, and Kaden. In his leisure time, Professor Tro enjoys mountain biking, surfing, reading to his children, and being outdoors with his family.

Brief Contents

	Preface	20
1	The Chemical World	36
2	Measurement and Problem Solving	46
3	Matter and Energy	90
4	Atoms and Elements	128
5	Molecules and Compounds	162
6	Chemical Composition	200
7	Chemical Reactions	238
8	Quantities in Chemical Reactions	282
9	Electrons in Atoms and the Periodic Table	318
10	Chemical Bonding	358
11	Gases	392
12	Liquids, Solids, and Intermolecular Forces	444
13	Solutions	480
14	Acids and Bases	520
15	Chemical Equilibrium	562
16	Oxidation and Reduction	608
17	Radioactivity and Nuclear Chemistry	644
	Appendix: Mathematics Review	MR-1
	Glossary	G-1
	Answers to Odd-Numbered Exercises	A-1
	Photo Credits	PC-1
	Index	I-1

Contents

Preface

The Chemical World

1.1	Soda Pop Fizz	37
1.2	Chemicals Compose Ordinary Things	39
1.3	All Things Are Made of Atoms and Molecules	39
1.4	The Scientific Method: How Chemists Think	40
	EVERYDAY CHEMISTRY Combustion and the	
	Scientific Method	42
1.5	A Beginning Chemist: How to Succeed	42
CHAPTER IN REVIEW		
KEY TERMS		
EXER	CISES	44

2 Measurement and Problem Solving

2.1	Measuring Global Temperatures	47
2.2	Scientific Notation: Writing Large and Small Numbers	47
2.3	Significant Figures: Writing Numbers to Reflect Precision Counting Significant Figures 51 Exact Numbers 52	50
	CHEMISTRY IN THE MEDIA The COBE Satellit and Very Precise Measurements That Illuminate Our Cosmic Past	te 53
2.4	Significant Figures in Calculations Multiplication and Division 54 Rounding 54 Addition and Subtraction 55 Calculations Involving Both Multiplication/Division and Addition/Subtraction 56	54 1
2.5	The Basic Units of Measurement The Base Units 58 Prefix Multipliers 59 Derived Units 60	58
2.6	Problem Solving and Unit Conversion Converting Between Units 61 General Problem-Solving Strategy 63	61

	Problem-Solving Procedure Solving Unit	
	Conversion Problems	64
2.7	Solving Multistep Unit Conversion Problems	65
2.8	Units Raised to a Power	67
	CHEMISTRY AND HEALTH Drug Dosage	68
2.9	Density	70
	Calculating Density 70	
	Density as a Conversion Factor 71	
	CHEMISTRY AND HEALTH Density,	
	Cholesterol, and Heart Disease	73
2.10	Numerical Problem-Solving Strategies	
	and the Solution Map	73
	Problem-Solving Procedure Solving	
	Numerical Problems	74
CHAP	TER IN REVIEW	75
KEY TE	ERMS	81
EXERC	ISES	81
		7

3 Matter and Energy

3.1	In Your Room	91
3.2	What Is Matter?	91
3.3	Classifying Matter According to Its State: Solid, Liquid, and Gas	93
3.4	Classifying Matter According to Its Composition: Elements, Compounds,	04
2 5	Differences in Mattery Developed and	94
5.9	Chemical Properties	97
3.6	Changes in Matter: Physical and Chemical Changes Separating Mixtures Through Physical Changes	99 101
3.7	Conservation of Mass: There Is No New Matte	er 101
3.8	Energy	102
	CHEMISTRY IN THE ENVIRONMENT	
	Getting Energy out of Nothing? Units of Energy 103	103
3.9	Energy and Chemical and Physical Change	105
3.10	Temperature: Random Motion of	
	Molecules and Atoms	106
3.11	Temperature Changes: Heat Capacity	110
	EVERYDAY CHEMISTRY Coolers, Camping, and the Heat Capacity of Water	111

3.12 Energy and Heat Capacity Calculations	111
CHAPTER IN REVIEW	115
KEY TERMS	120
EXERCISES	120

Atoms and Elements 128

4.1	Experiencing Atoms at Tiburon	129
4.2	Indivisible: The Atomic Theory	130
	EVERYDAY CHEMISTRY Atoms and Humans	131
4.3	The Nuclear Atom	131
4.4	The Properties of Protons, Neutrons,	
	and Electrons	133
	EVERYDAY CHEMISTRY Solid Matter?	134
4.5	Elements: Defined by Their Numbers	
	of Protons	135
4.6	Looking for Patterns: The Periodic Law	
	and the Periodic Table	138
4.7	Ions: Losing and Gaining Electrons Ions and the Periodic Table 143	142
4.8	Isotopes: When the Number of	
	Neutrons Varies	145
4.9	Atomic Mass: The Average Mass of	
	an Element's Atoms	147
	CHEMISTRY IN THE ENVIRONMENT	
	Radioactive Isotopes at Hanford, Washington	148
CHAP	TER IN REVIEW	150
KEY TE	ERMS	153
EXERC	ISES	153

5 Molecules and Compounds

90

5.1	Sugar and Salt	163
5.2	Compounds Display Constant Composition	164
5.3	Chemical Formulas: How to Represent	
	Compounds	165
	Polyatomic Ions in Chemical Formulas 167	
	Types of Chemical Formulas 168	
5.4	A Molecular View of Elements and Compound	ds 169
	Atomic Elements 169	
	Molecular Elements 169	
	Molecular Compounds 169	
	Ionic Compounds 170	
5.5	Writing Formulas for Ionic Compounds	172
	Writing Formulas for Ionic Compounds Containi	ng
	Only Monoatomic Ions 172	
	Problem-Solving Procedure Writing Formulas	
	for Ionic Compounds	172

162

Writing Formulas for Ionic Compounds Containing Polyatomic Ions 173

5.6	Nomenclature: Naming Compounds	174
5.7	Naming Ionic Compounds	174
	Naming Binary Ionic Compounds Containing a Metal That Forms Only One Type of Cation 175 Naming Binary Ionic Compounds Containing a Me That Forms More Than One Type of Cation 176 Naming Ionic Compounds Containing a Polyatomic Ion 177	etal
	EVERYDAY CHEMISTRY Polyatomic lons	178
5.8	Naming Molecular Compounds	179
5.9	Naming Acids	180
	Naming Binary Acids 180 Naming Oxyacids 181	
	CHEMISTRY IN THE ENVIRONMENT	
	Acid Rain	182
5.10	Nomenclature Summary	182
	Ionic Compounds 183 Molecular Compounds 183 Acids 183	
5.11	Formula Mass: The Mass of a Molecule	
	or Formula Unit	184
CHAP	TER IN REVIEW	185
KEY TE	ERMS	190
EXERC	ISES	190

6 Chemical Composition

6.1	How Much Sodium?	201
6.2	Counting Nails by the Pound	202
6.3	Counting Atoms by the Gram Converting between Moles and Number of Atoms 203 Converting between Grams and Moles of an Element 204 Converting between Grams of an Element and	203
	Number of Atoms 207	
6.4	Counting Molecules by the Gram Converting between Grams and Moles of a Compound 208	208
	Converting between Grams of a Compound and Number of Molecules 210	
6.5	Chemical Formulas as Conversion Factors Converting between Grams of a Compound and 1 of a Constituent Element 212 Converting between Grams of a Compound and Grams of a Constituent Element 213	211 Moles
	CHEMISTRY IN THE ENVIRONMENT	
	Chlorine in Chlorofluorocarbons	215
6.6 6.7	Mass Percent Composition of Compounds	216
0.7	Chemical Formula	217

 6.8 Calculating Empirical Formulas for Compounds 219 Calculating an Empirical Formula from Experimental Data 220 Problem-Solving Procedure Obtaining an Empirical Formula from Experimental Data 227 6.9 Calculating Molecular Formulas for Compounds 222 CHAPTER IN REVIEW 224 KEY TERMS 230 EXERCISES 230 		CHEMISTRY AND HEALTH Fluoridation of Drinking Water	219
 Problem-Solving Procedure Obtaining an Empirical Formula from Experimental Data 227 6.9 Calculating Molecular Formulas for Compounds 222 CHAPTER IN REVIEW 224 KEY TERMS 230 EXERCISES 230 	6.8	Calculating Empirical Formulas for Compounds Calculating an Empirical Formula from Experimental Data 220	219
6.9Calculating Molecular Formulas for Compounds222CHAPTER IN REVIEW224KEY TERMS230EXERCISES230		Problem-Solving Procedure Obtaining an Empirical Formula from Experimental Data	221
CHAPTER IN REVIEW224KEY TERMS230EXERCISES230	6.9	Calculating Molecular Formulas for Compounds	222
KEY TERMS 230 EXERCISES 230	CHAPT	ER IN REVIEW	224
EXERCISES 230	KEY TERMS		230
230	EXERC	ISES	230

Chemical Reactions

200

7.1	Grade School Volcanoes, Automobiles, and	
	Laundry Detergents	239
7.2	Evidence of a Chemical Reaction	240
7.3	The Chemical Equation	243
7.4	How to Write Balanced Chemical Equations	245
	Problem-Solving Procedure Writing Balanced	
	Chemical Equations	246

238

7.5	Aqueous Solutions and Solubility: Compounds Dissolved in Water Solubility 249	248
7.6	Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid Predicting Precipitation Reactions 252	252
	Problem-Solving Procedure Writing Equations for Precipitation Reactions	254
7.7	Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations	255
7.8	Acid–Base and Gas Evolution Reactions Acid–Base (Neutralization) Reactions 257 Gas Evolution Reactions 258	257
	CHEMISTRY AND HEALTH Neutralizing	
	Excess Stomach Acid	260
7.9	Oxidation–Reduction Reactions Combustion Reactions 261	260
7.10	Classifying Chemical Reactions Classifying Chemical Reactions by What Atoms Do 263 Classification Flowchart 265	262
	CHEMISTRY IN THE ENVIRONMENT	
	The Reactions Involved in Ozone Depletion	267
CHAP	CHAPTER IN REVIEW	
KEY TE	ERMS	273
EXERC	EXERCISES	

Quantities in Chemical Reactions 282

8.1	Climate Change: Too Much Carbon Dioxide	283
8.2	Making Pancakes: Relationships between	
	Ingredients	284
8.3	Making Molecules: Mole-to-Mole Conversions	285
8.4	Making Molecules: Mass-to-Mass Conversions	287
	CHEMISTRY IN THE MEDIA The Controversy	,
	over Oxygenated Fuels	288
8.5	More Pancakes: Limiting Reactant,	
	Theoretical Yield, and Percent Yield	291
8.6	Limiting Reactant, Theoretical Yield, and	
	Percent Yield from Initial Masses of Reactants	294
8.7	Enthalpy: A Measure of the Heat Evolved	
	or Absorbed in a Reaction	298
	EVERYDAY CHEMISTRY Bunsen Burners	299
	Sign of $H_{\rm rxn}$ 299	
	Stoichiometry of $H_{\rm rxn}$ 300	
CHAPT	ER IN REVIEW	302
KEY TE	RMS	306
EXERC	ISES	307

Electrons in Atoms and the Periodic Table 318

9.1	Blimps, Balloons, and Models of the Atom	319
9.2	Light: Electromagnetic Radiation	320
9.3	The Electromagnetic Spectrum	322
	CHEMISTRY AND HEALTH Radiation	324
9.4	The Bohr Model: Atoms with Orbits	325
9.5	The Quantum-Mechanical Model: Atoms with Orbitals	328
	From Orbits to Orbitals 329	5
9.6	Quantum-Mechanical Orbitals and Electron Co figurations Quantum-Mechanical Orbitals 330	n- 329
	Electron Configurations: How Electrons Occupy Orbitals 332	
9.7	Electron Configurations and the Periodic Table	336
9.8	The Explanatory Power of the Quantum-	
	Mechanical Model	339

9.9	Periodic Trends: Atomic Size, Ionization	~ · · ·
	Atomic Size 341	341
	CHEMISTRY AND HEALTH Pumping lons:	
	Atomic Size and Nerve Impulses	343
	Ionization Energy 343	
	Metallic Character 345	
CHAPT	ER IN REVIEW	347
KEY TE	RMS	350
EXERC	ISES	350

Chemical Bonding

10.1	Bonding Models and AIDS Drugs	359
10.2	Representing Valence Electrons with Dots	360
10.3	Lewis Structures of Ionic Compounds: Electrons Transferred	; 361
10.4	Covalent Lewis Structures: Electrons Shared Double and Triple Bonds 363	362
10.5	Writing Lewis Structures for Covalent Compounds	364
	 Problem-Solving Procedure Writing Lewis Structures for Covalent Compounds Writing Lewis Structures for Polyatomic Ions 366 Exceptions to the Octet Rule 367 	365
10.6	Resonance: Equivalent Lewis Structures for the Same Molecule	368
10.7	Predicting the Shapes of Molecules	369
	CHEMISTRY IN THE ENVIRONMENT	
	The Lewis Structure of Ozone	370
	 Problem-Solving Procedure Predicting Geometry Using VSEPR Theory Representing Molecular Geometries on Paper 373 	373 3
	CHEMISTRY AND HEALTH Fooled by	
	Molecular Shape	374
10.8	Electronegativity and Polarity: Why Oil and Water Don't Mix Electronegativity 375	375
	Polar Bonds and Polar Molecules 377	
	EVERYDAY CHEMISTRY How Soap Works	379
CHAP	CHAPTER IN REVIEW	
KEY TERMS		383
EXERC	EXERCISES 3	

11.1	Extra-Long Straws	393
11.2	Kinetic Molecular Theory: A Model for Gases	394

11.3	Pressure: The Result of Constant Molecular Collisions Pressure Units 397 Pressure Unit Conversion 398	396
11.4	Boyle's Law: Pressure and Volume	399
	EVERYDAY CHEMISTRY Airplane Cabin Pressurization	400
	EVERYDAY CHEMISTRY Extra-long Snorkels	404
11.5	Charles's Law: Volume and Temperature	405
11.6	The Combined Gas Law: Pressure, Volume,	
	and Temperature	409
11.7	Avogadro's Law: Volume and Moles	411
11.8	The Ideal Gas Law: Pressure, Volume,	
	Temperature, and Moles	413
	Molar Mass of a Gas from the Ideal Gas Law 417	
11.9	Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen Deep-Sea Diving and Partial Pressure 421 Collecting Gases over Water 422	419
11.10	Gases in Chemical Reactions	423
	Molar Volume at Standard Temperature	
	and Pressure 426	
	CHEMISTRY IN THE ENVIRONMENT	420
	Air Pollution	428
CHAPT	CHAPTER IN REVIEW	
KEY TERMS		434
EXERCISES		434

Liquids, Solids, and Intermolecular Forces

444

12.1 12.2 12.3	Interactions between Molecules Properties of Liquids and Solids Intermolecular Forces in Action: Surface	445 446
	Tension and Viscosity Surface Tension 448 Viscosity 448	447
	EVERYDAY CHEMISTRY Why Are Water	119
42.4	Even evention and Constantion	440
12.4	Evaporation and Condensation	449
	Energetics of Evaporation and Condensation 452 Heat of Vaporization 453	
12.5	Melting, Freezing, and Sublimation Energetics of Melting and Freezing 455 Heat of Fusion 455 Sublimation 457	454
12.6	Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion–Dipole Dispersion Force 459	459

	Dipole–Dipole Force 460	
	Hydrogen Bonding 462	
	Ion–Dipole Force 463	
	CHEMISTRY AND HEALTH Hydrogen	
	Bonding in DNA	464
12.7	Types of Crystalline Solids: Molecular,	
	Ionic, and Atomic	466
	Molecular Solids 466	
	Ionic Solids 467	
	Atomic Solids 467	
12.8	Water: A Remarkable Molecule	468
	CHEMISTRY IN THE ENVIRONMENT	
	Water Pollution	469
CHAPTER IN REVIEW		470
KEY TERMS		474
EXERCISES		474

13 Solutions 480

13.1	Tragedy in Cameroon	481
13.2	Solutions: Homogeneous Mixtures	482
13.3	Solutions of Solids Dissolved in Water:	
	How to Make Rock Candy	483
	Solubility and Saturation 484	
	Electrolyte Solutions: Dissolved Ionic Solids 485	
	How Solubility Varies with Temperature 486 Rock Candy 486	
12 /	Solutions of Cases in Water: How Soda	
13.4	Pon Gets Its Fizz	486
13 5	Specifying Solution Concentration:	400
13.5	Mass Percent	488
	Mass Percent 488	100
	Using Mass Percent in Calculations 489	
13.6	Specifying Solution Concentration: Molarity	491
	CHEMISTRY IN THE ENVIRONMENT	
	The Dirty Dozen	492
	Using Molarity in Calculations 493	
40 7	Ion Concentrations 495	
13./	Solution Dilution	495
13.8	Solution Stoichiometry	497
13.9	Freezing Point Depression and Boiling	
	Point Elevation: Making Water Freeze	
	Colder and Boil Hotter	500
	EVERYDAX CHEMISTRY Antifractor in Fract	502
	Boiling Point Elevation 502	502
13 10	Osmosis: Why Drinking Salt Water	
13.10	Causes Dehvdration	504
	CHEMISTRY AND HEALTH Solutions	
	in Medicine	505
СНАРТ	FER IN REVIEW	506
KEY TE	RMS	512
EXERC	ISES	512

562

14 Acids and Bases 520

14.1	Sour Patch Kids and International Spy Movies	521
14.2	Acids: Properties and Examples	522
14.3	Bases: Properties and Examples	523
14.4	Molecular Definitions of Acids and Bases The Arrhenius Definition 524 The Brønsted–Lowry Definition 525	524
14.5	Reactions of Acids and Bases Neutralization Reactions 527 Acid Reactions 528	527
	EVERYDAY CHEMISTRY What Is in My Antacid? Base Reactions 530	530
14.6	Acid–Base Titration: A Way to Quantify the Amount of Acid or Base in a Solution	530
14.7	Strong and Weak Acids and BasesStrong Acids533Weak Acids534Strong Bases537Weak Bases537	533
14.8	Water: Acid and Base in One	538
14.9	The pH and pOH Scales: Ways to Express Acidity and Basicity	541

Calculating pH from $[H_3O^+]$ 542	
Calculating $[H_3O^+]$ from pH 543	
The pOH Scale 544	
14.10 Buffers: Solutions That Resist pH Change	545
CHEMISTRY AND HEALTH Alkaloids	546
CHEMISTRY AND HEALTH The Danger of	
Antifreeze	548
CHAPTER IN REVIEW	548
KEY TERMS	554
EXERCISES	554

15 Chemical Equilibrium

15.1	Life: Controlled Disequilibrium	563
15.2	The Rate of a Chemical Reaction Collision Theory 564	564
	How Concentration Affects the Rate of a Reaction How Temperature Affects the Rate of a Reaction	566 567
15.3	The Idea of Dynamic Chemical Equilibrium	568
15.4	The Equilibrium Constant: A Measure of	
	How Far a Reaction Goes	571
	Writing Equilibrium Constant Expressions for Chemical Reactions 571	
	The Significance of the Equilibrium Constant 572	
15.5	Heterogeneous Equilibria: The Equilibrium	
	Expression for Reactions Involving a Solid	
	or a Liquid	574
15.6	Calculating and Using Equilibrium Constants	575
	Using Equilibrium Constants in Calculations 575	
15.7	Disturbing a Reaction at Equilibrium:	
	Le Châtelier's Principle	578
15.8	The Effect of a Concentration Change	
	on Equilibrium	580
15.9	The Effect of a Volume Change on Equilibrium	582
	CHEMISTRY AND HEALTH How a	E01
15 10	The Effect of a Temperature Change	264
13.10	on Equilibrium	585
15.11	The Solubility-Product Constant	587
	Using $K_{\rm sp}$ to Determine Molar Solubility 588	
	EVERYDAY CHEMISTRY Hard Water	589
15.12	The Path of a Reaction and the Effect	
	of a Catalyst How Activation Energies Affect Reaction Pater 59	590
	Catalysts Lower the Activation Energy 592	/0
	Enzymes: Biological Catalysts 593	
CHAPT	ER IN REVIEW	594
KEY TE	RMS	598
EXERC	ISES	598

Oxidation and Reduction

16.1	The End of the Internal Combustion Engine?	609
16.2	Oxidation and Reduction: Some Definitions	610
16.3	Oxidation States: Electron Bookkeeping	613
	EVERYDAY CHEMISTRY The Bleaching of	
	Hair	615
16.4	Balancing Redox Equations	616
	Problem-Solving Procedure Balancing Redox	
	Equations Using the Half-Reaction Method 617	
	CHEMISTRY IN THE ENVIRONMENT	
	Photosynthesis and Respiration: Energy for Life	621
16.5	The Activity Series: Predicting Spontaneous	
	Redox Reactions	621
	Predicting Whether a Metal Will Dissolve in Acid	624
16.6	Batteries: Using Chemistry to	
	Generate Electricity	625
	Dry-Cell Batteries 627	
	Lead-Acid Storage Batteries 628	
	Fuel Cells 628	
16.7	Electrolysis: Using Electricity to Do Chemistry	629
16.8	Corrosion: Undesirable Redox Reactions	630
	EVERYDAY CHEMISTRY The Fuel-Cell	
	Breathalyzer	631
CHAPT	FER IN REVIEW	632
KEY TE	KEY TERMS	
EXERCISES		636

Radioactivity and Nuclear Chemistry 644

17.1	Diagnosing Appendicitis	645
17.2	The Discovery of Radioactivity	646
17.3	Types of Radioactivity: Alpha, Beta, and Gamma Decay	647
	Alpha (α) Radiation 648	
	Beta (β) Radiation 650	
	Gamma (γ) Radiation 651	
	Positron Emission 652	
17.4	Detecting Radioactivity	654
17.5	Natural Radioactivity and Half-Life	655
	CHEMISTRY AND HEALTH Environmental	
	Radon	656
	A Natural Radioactive Decay Series 657	
17.6	Radiocarbon Dating: Using Radioactivity to Measure the Age of Fossils and	
	Other Artifacts	658

CHEMISTRY IN THE MEDIA The Shroud of Turin

	of Turin	659
17.7	The Discovery of Fission and the Atomic Bomb	660
17.8	Nuclear Power: Using Fission to	
	Generate Electricity	662
17.9	Nuclear Fusion: The Power of the Sun	663
17.10	The Effects of Radiation on Life	664
	Acute Radiation Damage 664	
	Increased Cancer Risk 664 Genetic Defects 665	
	Measuring Radiation Exposure 665	
17.11	Radioactivity in Medicine	665
	Isotope Scanning 665	
	Radiotherapy 666	
CHAPT	FER IN REVIEW	667
KEY TE	RMS	670
EXERC	ISES	670
Appe	ndix: Mathematics Review	NR-1
Gloss	ary	G-1
Answ	vers to Odd-Numbered Exercises	A-1
Photo	o Credits	PC-1
Index	<	I-1

Problem-Solving Procedures

Solving Unit Conversion Problems	64
Solving Numerical Problems	74
Writing Formulas for Ionic Compounds	173
Obtaining an Empirical Formula from Experimental Data	221
Writing Balanced Chemical Equations	246
Writing Equations for Precipitation Reactions	254
Writing Lewis Structures for Covalent Compounds	365
Predicting Geometry Using VSEPR Theory	373
Balancing Redox Equations Using the Half-Reaction Method	617
Naming Alkanes	689

This page is intentionally left blank.

To the Student

This book is for *you*, and every text feature is meant to help you learn. I have two main goals for you in this course: to see chemistry as you never have before and to develop the problem-solving skills you need to succeed in chemistry.

I want you to experience chemistry in a new way. I have written each chapter to show you that chemistry is not just something that happens in a laboratory; chemistry surrounds you at every moment. I have worked with several outstanding artists to develop photographs and art that will help you visualize the molecular world. From the opening example to the closing chapter, you will *see* chemistry. My hope is that when you finish this course, you will think differently about your world because you understand the molecular interactions that underlie everything around you.

My second goal is for you to develop problem-solving skills. No one succeeds in chemistry—or in life, really—without the ability to solve problems. I can't give you a formula for problem solving, but I can give you strategies that will help you develop the *chemical intuition* you need to understand chemical reasoning.

Look for several recurring structures throughout this book designed to help you master problem solving. The most important ones are (1) a four-step process (Sort, Strategize, Solve, and Check) designed to help you learn how to solve problems; (2) the solution map, a visual aid that helps you navigate your way through problems; (3) the two-column Examples, in which the left column explains in clear and simple language the purpose of each step of the solution shown in the right column; and (4) the three-column Examples, which describe a problem-solving procedure while demonstrating how it is applied to two different Examples. In addition, you will find a For More Practice feature at the end of each worked Example that directs you to the end-of-chapter problems that provide more opportunity to practice the skill(s) covered in the Example. In this edition, I have added a new tool for you at the end of each chapter: a Self-Assessment Quiz. These quizzes are designed to help you test yourself on the core concepts and skills of each chapter. You can also use them as you prepare for exams. Before an exam, take the quiz associated with each chapter that the exam will cover. The questions you miss on the quiz will reveal the areas you need to spend the most time studying.

Lastly, I hope this book leaves you with the knowledge that chemistry is *not* reserved only for those with some superhuman intelligence level. With the right amount of effort and some clear guidance, anyone can master chemistry, including you.

Sincerely,

Nivaldo J. Tro tro@westmont.edu

To the Instructor

I thank all of you who have used any of the first four editions of *Introductory Chemistry*—you have made this book the most widely selling book in its market, and for that I am extremely grateful. The preparation of the fifth edition has enabled me to continue to refine the book to meet its fundamental purpose: teaching chemical skills in the context of relevance.

Introductory Chemistry is designed for a one-semester, college-level, introductory or preparatory chemistry course. Students taking this course need to develop problem-solving skills—but they also must see *why* these skills are important to them and to their world. Introductory Chemistry extends chemistry from the laboratory to the student's world. It motivates students to learn chemistry by demonstrating the role it plays in their daily lives.

This is a visual book. Wherever possible, I have used images to help communicate the subject. In developing chemical principles, for example, I worked with several artists to develop multipart images that show the connection between everyday processes visible to the eye and the molecular interactions responsible for those processes. This art has been further refined and improved in the fifth edition, making the visual impact sharper and more targeted to student learning. For example, you will note a hierarchical system of labeling in many of the images: The white-boxed labels are the most important, the tan-tint boxes are the second most important, and unboxed labels are the third most important. This allows me to treat related labels and annotations within an image in the same way, so that the relationships between them are immediately evident. My intent is to create an art program that teaches and that presents complex information clearly and concisely. Many of the illustrations showing molecular depictions of a real-world object or process have three parts: macroscopic (what we can see with our eyes); molecular and atomic (space-filling models that depict what the molecules and atoms are doing); and symbolic (how chemists represent the molecular and atomic world). The goal is for the student to begin to see the connections between the macroscopic world, the molecular world, and the representation of the molecular world with symbols and formulas.

I have also refined the problem-solving pedagogy to include four steps: Sort, Strategize, Solve, and Check. The *solution map*, which has been part of this book since the first edition, is now part of the *Strategize* step. This four-step procedure is meant to guide students as they learn chemical problem solving. Extensive flowcharts are also incorporated throughout the book, allowing students to visualize the organization of chemical ideas and concepts. The color scheme used in both the solution maps and the flowcharts is designed to have pedagogical value. More specifically, the solution maps utilize the colors of the visible spectrum—always in the same order, from violet to red.

Throughout the worked Examples in this book, I use a *two- or three-column* layout in which students learn a general procedure for solving problems of a particular type as they see this procedure applied to one or two worked Examples. In this format, the *explanation* of how to solve a problem is placed directly beside the actual steps in the *solution* of the problem. Many of you have said that you use a similar technique in lecture and office hours. Since students have specifically asked for connections between Examples and end-of-chapter problems, I include a For More Practice feature at the end of each worked Example that lists the review examples and end-of-chapter problems that provide additional opportunities to practice the skill(s) covered in the Example.

A successful new feature in the second edition was the Conceptual Checkpoints, a series of short questions that students can use to test their mastery of key concepts as they read through a chapter. Emphasizing understanding rather than calculation, they are designed to be easy to answer if the student has grasped the essential concept but difficult if he or she has not. Your positive remarks on this new feature prompted me to continue adding more of these to the fifth edition, including questions that highlight visualization of the molecular world.

This edition has allowed me to add four new global features to the book: Learning Outcomes (LOs), Group Questions, Self-Assessment Quizzes, and Interactive Worked Examples. You will find the learning outcomes underneath most section heads—many of the LOs are repeated in the end of chapter material with an associated worked example. You will find the Group Questions following the chapter exercises. You can assign these as homework if you would like, but you can also use them as in class activities to encourage active learning and peer-to-peer engagement. The Self-Assessment Quizzes are at the very beginning of the chapter review material. These quizzes are designed so that students can test themselves on the core concepts and skills of each chapter. I encourage my students to use these quizzes as they prepare for exams. For example, if my exam covers Chapters 5–8, I assign the quizzes for those chapters for credit (you can do this in MasteringChemistry[®]). Students then get a sort of pretest on the core material that will be on the exam. The Interactive Worked Examples are a new digital asset that we created for this edition. These examples are available in MasteringChemistry[®] and at the following website: www.pearsonglobaleditions.com/tro. Each Interactive Worked Example walks the student through a key example from the book (the examples that have been made interactive are marked with a play icon in the book). At a key point in the Interactive Worked Example, the video pauses and the student is asked a question. These questions are designed to encourage students to be active in the learning process. Once the student answers the question, the video resumes to the end. A follow-up question can then be assigned for credit in MasteringChemistry[®].

My goal in this new edition is to continue to help you make learning a more active (rather than passive) process for your students. The new Group Questions can help make your classroom more active. The new Conceptual Checkpoints, along with the new Self-Assessment Quizzes, make reading the book a more active process. The addition of the Interactive Worked Examples makes the media experience active as well. Research consistently shows that students learn better when they are actively engaged in the process. I hope the tools that I have provided here continue to aid you in teaching your students more effectively. Please feel free to e-mail me with any questions or comments you might have. I look forward to hearing from you as you use this book in your course.

Sincerely,

Nivaldo J. Tro tro@westmont.edu

Preface

New to This Edition

NEW! Key Learning Outcomes have been added to each chapter section. Learning outcomes correlate to the Chemical Skills and Examples in the end-of-chapter material and to MasteringChemistry[®]. Each section (after the introductory sections) has at least one learning outcome that summarizes the key learning objective of the material to help students focus their learning and assess their progress.

NEW! Self-Assessment Quizzes. Each chapter contains a 10-15 question multiple choice self-assessment quiz. These quizzes are designed to help students review the chapter material and prepare for exams.

NEW! 3–4 Questions for Group Work have been added to the end-of-chapter problems in each chapter to facilitate guided-inquiry learning both inside and outside the classroom.

NEW! 20 Interactive Worked Examples. Interactive Worked Examples are digital versions of the text's worked examples that make Tro's unique problem-solving strategies interactive, bringing his award-winning teaching directly to all students using his text. In these digital versions, students are instructed how to break down problems using Tro's proven Sort, Strategize, Solve, and Check technique. The Interactive Worked Examples can be accessed by scanning the QR code on the back cover allowing students to quickly access an office-hour type experience.

These problems are incorporated into MasteringChemistry[®] as assignable tutorial activities and are also available for download and distribution via the Instructor Resource Center (IRC) for instructional and classroom use.

More than 20 New Conceptual Checkpoints are in the fifth edition and are designed to make reading the book an active process. The checkpoints encourage students to stop and think about the ideas just presented before moving on and also provide a tool for self-assessment.

Interest Box Questions are now numbered in the Everyday Chemistry, Chemistry in the Environment, Chemistry in the Media, and Chemistry and Health boxes so that they can easily be assigned.

Cross-references to the Math Appendix, now indicated by a +/– icon in the fifth edition, are more visible and allow students to locate additional resources more easily.

Additional Features

 A student-friendly, step-by-step, problem-solving approach is presented throughout the book (fully introduced and explained in Chapter 2): Tro's unique two-and three-column examples help guide students through problems step-by-step using Sort, Strategize, Solve, and Check. "Relationships Used" are also included in most worked examples.

- In all chapters, figure labels follow a consistent hierarchy. Three types of labels appear in the art. The most important information is in white shadow boxes; the second most important is in tinted boxes (with no border); and the third level of labels is unboxed.
- All figures and figure captions have been carefully examined, and images and labels have been replaced or revised when needed to improve the teaching focus of the art program.
- Every end-of-chapter question has been carefully reviewed by the author and editor and accordingly revised and/or replaced when necessary.

Some significant improvements have been made to key content areas as well. These include:

- To reflect recent changes made by IUPAC that introduce more uncertainty in atomic masses, the periodic tables on the inside front cover of the book and all subsequent periodic tables in the text containing atomic masses now include the modified following atomic masses: Li 6.94; S 32.06; Ge 72.63; Se 78.97; and Mo 95.95.
- In Chapter 1, *The Chemical World*, key wording about chemicals as well as the definition of chemistry have been changed to more strongly reflect particles and properties connection.
- In Section 2.3, *Significant Figures: Writing Numbers to Reflect Precision*, clarification has been added about trailing zeros in the significant digits discussion in Section 2.3.
- In Section 3.8, *Energy*, a new schematic has been added to the photo of the dam to better illustrate the concept of potential energy, and there is a new figure, Figure 3.15, *Potential Energy of Raised Weight*.
- Several new subheadings have been added to Chapter 5 to help students better navigate the material; Table 5.3, *Some Common Polyatomic Ions*, has been moved to an earlier place in Chapter 5; and fourth edition Example 5.7, *Writing Formulas for Ionic Compounds*, has been replaced with fifth edition Example 5.7, *Writing Formulas for Ionic Compounds Containing Polyatomic Ions*.
- In Chapter 6, Chemistry in the Environment box *Chlorine in Chlorofluorocar*bons has been revised and updated. Figure 6.3, *The Ozone Shield*, has been updated and revised to include a molecular perspective and be a better teaching tool and Figure 6.4, *Growth of the Ozone Hole*, has been updated with 2010 data.
- The transition between balancing chemical equations to investigating types of reactions at the beginning of Section 7.5, *Aqueous Solutions and Solubility: Compounds Dissolved in Water*, has been sharpened to help students relate Section 7.5 to the previous section.
- Figure 7.7, *Solubility Rules Flowchart*, has been edited so that Ca²⁺, Sr²⁺, and Ba²⁺ are in periodic table order throughout for easier memorization.
- The phrase "global warming" has been replaced with "climate change" throughout Chapter 8, *Quantities in Chemical Reactions*, and Figure 8.2, *Climate Change*, has been updated to include global temperature data for 2011 and 2012.
- In Section 9.1, *Blimps, Balloons, and Models of the Atom,* more emphasis has been placed on the relationship between atomic structure and properties in the discussion of helium and hydrogen.
- In Section 9.4, *The Bohr Model: Atoms with Orbits,* new introductory material has been added to emphasize the relationship between light emission and electron motion.

- Orbital representations in figures throughout Chapter 9 have been modified to be more accurate.
- Throughout Chapter 10, Chemical Bonding, the term Lewis theory has been replaced with Lewis model.
- In Chapter 11, *Gases*, an update about how newer jets pressurize their cabins has been added to the Everyday Chemistry box, *Airplane Cabin Pressurization*, and Table 11.5, *Changes in Pollutant Levels for Major U.S. Cities*, 1980–2010, has been updated to include the most recent available data.
- Content has been revised and material has been added to improve clarity in the subsection entitled *Surface Tension* in Section 12.3, *Intermolecular Forces in Action: Surface Tension and Viscosity*. Also, the caption for Figure 12.5, *Origin of Surface Tension*, has been revised and the phase inset figures in Figure 12.16, *Heating Curve during Melting*, have been corrected to show the phases more accurately.
- The new title for Section 12.6, *Types of Intermolecular Forces: Dispersion*, *Dipole–Dipole, Hydrogen Bonding, and Ion–Dipole*, reflects new content and new material about ion–dipole forces, including new Figure 12.25, *Ion–Dipole Forces*. Also, ion–dipole forces have been added to Table 12.5, *Types of Intermolecular Forces*, and the art in the table now depicts space-filling models of the molecules.
- Content in Section 13.3, *Solutions of Solids Dissolved in Water: How to Make Rock Candy*, links the discussion of solvent–solute interactions to the discussion of intermolecular forces in Chapter 12.
- Figure 14.19, *How Buffers Resist pH Change*, has been changed to be more useful and easier for students to understand.
- Section 14.11, *Acid Rain: An Environmental Problem Related to Fossil Fuel Combustion*, has been cut.
- New, brief introductory statements have been added to Section 15.6, *Calculating and Using Equilibrium Constants*, and in Section 15.10, *The Effect of a Temperature Change on Equilibrium*, numbers that indicate sequence have been added to the three unnumbered equations that indicate how equilibrium changes when heat is added or removed from exothermic and endothermic reactions.
- The title of Figure 16.12, *Used Voltaic Cell*, has been corrected, and the art has been slightly modified.
- Figure 16.18, *Schematic Diagram of a Fuel-Cell Breathalyzer*, in the box Everyday Chemistry: *The Fuel-Cell Breathalyzer* has also been modified for accuracy.

The design and features of this text have been conceived to work together as an integrated whole with a single purpose: to help students understand chemical principles and to master problem-solving skills in a context of relevance. Students must be able not only to grasp chemical concepts and solve chemical problems, but also to understand how those concepts and problem-solving skills are relevant to their other courses, their eventual career paths, and their daily lives.

Teaching Principles

The development of basic chemical principles—such as those of atomic structure, chemical bonding, chemical reactions, and the gas laws—is one of the main goals of this text. Students must acquire a firm grasp of these principles in order to succeed in the general chemistry sequence or the chemistry courses that support the

allied health curriculum. To that end, the book integrates qualitative and quantitative material and proceeds from concrete concepts to more abstract ones.

Organization of the Text

The main divergence in topic ordering among instructors teaching introductory and preparatory chemistry courses is the placement of electronic structure and chemical bonding. Should these topics come early, at the point where models for the atom are being discussed? Or should they come later, after the student has been exposed to chemical compounds and chemical reactions? Early placement gives students a theoretical framework within which they can understand compounds and reactions. However, it also presents students with abstract models before they understand why they are necessary. I have chosen a later placement for the following reasons:

- **1. A later placement provides greater flexibility.** An instructor who wants to cover atomic theory and bonding earlier can simply cover Chapters 9 and 10 after Chapter 4. However, if atomic theory and bonding were placed earlier, it would be more difficult for the instructor to skip these chapters and come back to them later.
- 2. A later placement allows earlier coverage of topics that students can more easily visualize. Coverage of abstract topics too early in a course can lose some students. Chemical compounds and chemical reactions are more tangible than atomic orbitals, and their relevance is easier to demonstrate to the beginning student.
- **3.** A later placement gives students a reason to learn an abstract theory. Once students learn about compounds and reactions, they are more easily motivated to learn a theory that explains compounds and reactions in terms of underlying causes.
- **4.** A later placement follows the scientific method. In science, we normally make observations, form laws, and then build models or theories that explain our observations and laws. A later placement follows this ordering.

Nonetheless, I know that every course is unique and that each instructor chooses to cover topics in his or her own way. Consequently, I have written each chapter for maximum flexibility in topic ordering. In addition, the book is offered in two formats. The full version, *Introductory Chemistry*, contains 19 chapters, including organic chemistry and biochemistry. The shorter version, *Introductory Chemistry Essentials*, contains 17 chapters and omits these topics.

Print and Media Resources

For the Instructor

MasteringChemistry[®]

MasteringChemistry[®] is the first adaptive-learning online homework and tutorial system. Instructors can create online assignments for their students by choosing from a wide range of items, including end-of-chapter problems and research-enhanced tutorials. Assignments are automatically graded with up-to-date diagnostic information, helping instructors pinpoint where students struggle either individually or for the class as a whole. These questions can be used asynchro-

nously outside of class as well. For the fifth edition, 20 new Interactive Worked Examples have been added to the Study Area. Icons appear next to examples indicating that a digital version is available.

NEW! Learning Catalytics[™]

Learning CatalyticsTM is a "bring your own device" student engagement, assessment, and classroom intelligence system. With Learning CatalyticsTM you can:

- Assess students in real time, using open-ended tasks to probe student understanding.
- Understand immediately where students are and adjust your lecture accordingly.
- Improve your students' critical-thinking skills.
- Access rich analytics to understand student performance.
- Add your own questions to make Learning Catalytics[™] fits your course exactly.
- Manage student interactions with intelligent grouping and timing.

Learning CatalyticsTM is a technology that has grown out of twenty years of cutting edge research, innovation, and implementation of interactive teaching and peer instruction. Learning CatalyticsTM is included with the purchase of Mastering with eText. Michael Everest of Westmont College has written a set of questions in Learning CatalyticsTM that correlates directly to the topics and concepts in *Introductory Chemistry*, 5e and encourages group-based inquiry learning.

NEW! Adaptive Follow-up Assignments in MasteringChemistry[®]

Instructors now have the ability to assign adaptive follow-up assignments to students. Content delivered to students as part of adaptive learning will be automatically personalized for each individual based on strengths and weaknesses identified by his or her performance on Mastering parent assignments.

NEW! Dynamic Study Modules, designed to enable students to study effectively on their own, as well as help students quickly access and learn the nomenclature they need to be more successful in chemistry. These modules can be accessed on smartphones, tablets, and computers and results can be tracked in the MasteringChemistry[®] Gradebook. How it works:

- Students receive an initial set of questions and benefit from the metacognition involved with asking them to indicate how confident they are with their answer.
- 2. After answering each set of questions, students review their answers.
- **3.** Each question has explanation material that reinforces the correct answer response and addresses the misconceptions found in the wrong answer choices.
- **4.** Once students review the explanations, they are presented with a new set of questions. Students cycle through this dynamic process of test-learn-retest until they achieve mastery of the material.

Instructor's Manual by Mark Ott of Jackson Community College, and Matthew Johll of Illinois Valley Community College. This manual features lecture outlines with presentation suggestions, teaching tips, suggested in-class demonstrations, and topics for classroom discussion. It also contains full solutions to all the end-of-chapter problems from the text. *TestGen Testbank* by Michael Hauser of St. Louis Community College. This download-only test bank includes more than 2000 questions and is available on the Instructor's Resource Center.

Instructor's Resource Materials This resource provides an integrated collection of resources to help instructors make efficient and effective use of their time and is available for download from the Instructor's Resource Center. The package features the following:

- All the art from the text, including figures and tables in JPG and PDF formats; movies; animations; Interactive Molecules; and the Instructor's Resource Manual files.
- Four PowerPoint[™] presentations: (1) a lecture outline presentation for each chapter, (2) all the art from the text, (3) the worked Examples from the text, and (4) clicker questions.
- TestGen, a computerized version of the Test Item File that allows instructors to create and tailor exams to fit their needs.

Instructor's Guide for Student's Guided Activity Workbook by Michael Everest of Westmont College. This manual features assessible outcomes, facilitation tips, and demonstration suggestions to help integrate guided-inquiry learning in the class-room and is available for download on the Instructor's Resource Center.

For the Student

Pearson eText offers students the power to create notes, highlight text in different colors, create bookmarks, zoom, and view single or multiple pages. Access to the Pearson eText for *Introductory Chemistry*, Fifth Edition, is available for purchase within MasteringChemistry[®].

Study Guide (0-321-94905-6) by Donna Friedman of St. Louis Community College—Florissant Valley. Each chapter of the Study Guide contains an overview, key learning outcomes, a chapter review, as well as practice problems for each major concept in the text. Each chapter is followed by two or three self-tests with answers so students can check their work.

NEW! Student's Guided Activity Workbook (0-321-94908-0) by Michael Everest of Westmont College. This set of guided-inquiry activities enables students to construct chemical knowledge and related skills on their own. Each activity begins by presenting some information (as a table, figure, graph, text, etc.). Students, working in groups of 3–4, answer questions designed to draw their attention to the important concepts and trends exemplified in the information. Through their active participation in the learning process, students learn not only chemistry, but also a wide range of additional skills such as information processing, problem solving, deductive reasoning, and teamwork. There are approximately three complete worksheets to accompany each chapter in *Introductory Chemistry*, and each worksheet should take students from 50–60 minutes to complete. The activities can be used in place of, or as a supplement to, a lecture-based pedagogy. This supplement is available through Pearson Custom Library www.pearsoncustomlibrary.com.